Methods for multiphase flows with high density ratio

نویسنده

  • V. Moureau
چکیده

Two-phase flows with high density ratio and high shear are known to be challenging to simulate. In this work, two strategies for improving the robustness of high density ratio two-phase flow simulations are investigated. The first method, based on Rudman’s work with the volume of fluid method (Rudman 1998), aims at improving the consistency between interface and momentum transport by using the interface position to estimate the density that appears in the momentum convection fluxes. The second approach effectively decouples gas and liquid velocities by introducing two distinct vector fields coupled through the pressure Poisson equation, in the spirit of the ghost fluid method Fedkiw et al. (1999). An algorithm that reconstructs the liquid velocity in the gas and the gas velocity in the liquid is then employed, ensuring that the velocity field is continuous while allowing for discontinuous gradients at the interface. These two methods are evaluated on a droplet convection test case, and both are found to improve significantly the robustness of the simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple - Relaxation - Time Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios - 10135

In this paper, the lattice Boltzmann method is reviewed for specific applications to numerical simulation of multiphase flow problems. A thorough literature review regarding the multi-phase lattice Boltzmann method was conducted with special focus on flows with large density and viscosity ratios between the two phases. A multiphase model with the capability of handling large-density-ratios is c...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

A lattice Boltzmann model for multiphase flows with large density ratio

A lattice Boltzmann model for simulating multiphase flows with large density ratios is described in this paper. The method is easily implemented. It does not require solving the Poisson equation and does not involve the complex treatments of derivative terms. The interface capturing equation is recovered without any additional terms as compared to other methods [M.R. Swift, W.R. Osborn, J.M. Ye...

متن کامل

Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows

Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows Report Title A numerical algorithm and the corresponding paralleled implementation for the study of magnetohydrodynamics (MHD) of large density ratio, three-dimensional multiphase flows at low magnetic Reynolds numbers have been developed. The algorithm employs the method of front tracking for ...

متن کامل

Pore-scale Simulation of High-density-ratio Multiphase Flows in Porous Media Using Lattice Boltzmann Method

A lattice Boltzmann high-density-ratio model, which uses diffuse interface theory to describe the interfacial dynamics and was proposed originally by Lee and Liu [T. Lee, L. Liu, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys. 229(2010) 8045-8063], is extended to simulate multiphase flows in porous media. A wetting boundary treatment is proposed for t...

متن کامل

On the lattice Boltzmann method for multiphase flows with large density ratios

is a reduced-order kinetic model to reproduce the Navier-Stokes hydrodynamics (and beyond) at a macroscopic level. Since the pioneering work of McNamura and Zanetti (1988), the LB method has been extended to various complex flows involving, for example, multicomponent and interfacial phenomena , and has been particularly successful for multiphase flows in complex geometry and porous media (Succ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010